

Venus atmosphere build-up and evolution: where did the oxygen go? May abiotic oxygen-rich atmospheres exist on extrasolar planets? Rationale for a Venus entry probe

Eric Chassefière¹, J.-J. Berthelier¹, F. Leblanc¹, A. Jambon², J.-C. Sabroux³, O. Korablev

¹Pôle de Planétologie/IPSL, Université P & M Curie, Boîte 102, 4 place Jussieu, 75252 Paris Cedex 05, France ²Laboratoire Magie, Université P & M Curie, Boîte 110, 4 place Jussieu 75252 Paris Cedex 05, France ³IRSN, Centre de Saclay, Bât. 389, B.P. N°68, 91192 Gif sur Yvette Cedex, France ⁴IKI, Profsoyuznaya 84/32 117997 Moscow, Russia

Volatile inventory of terrestrial planets

- Same N₂ and CO₂ inventories on Venus and Earth, much less on Mars (due to escape).
- Three major differences of Venus atmosphere :
 - I] Virtually no water(a few 10 cmprecipitable)
 - II] ≈3 times less ⁴⁰Ar
 - III] ≈100 times more³⁶Ar

Il Loss of water on Venus

- Runaway (or moist) greenhouse (Rasool and De Bergh, 1970):
 - Evaporation of the primitive ocean.
 - Photolysis of H₂O in the high atmosphere.
 - Hydrodynamic escape of H.
 - Removal of the totality of H contained in 1 TO (Terrestrial Ocean) during the first billion years (Kasting and Pollack, 1983)

Hydrodynamic escape

- Global, cometary-like, expansion of the atmosphere.
- Requires a large energy deposition rate at the top of the atmosphere (possible sources : EUV, Solar-Wind -?-, Giant Impact -?-).
- May occur for H or H₂-rich thermospheres in **primitive conditions**, e.g. in the two following cases :
 - Primordial H₂/He atmospheres (all terrestrial planets).
 - Outgassed H₂O-rich atmosphere during an episode on runaway and/or wet greenhouse (Venus case).
- Did hydrodynamic escape ever occur on a planet? Main clues at present time :
 - Isotopic fractionation of Xe on Earth.
 - Loss of the primitive Venus ocean.

Terrestrial xenon

- Terrestrial xenon is heavier than solar and meteoritic Xe.
- May have been produced by GI-driven hydrodynamic escape on primitive Earth (at the time when Moon formed) (Pepin and Porcelli, 2002).
- Mars Xe is similarly fractionated: coincidental (?) if due to hydrodynamic escape.
- Alternative hypothesis: Xe was already fractionated within pre-planetary carriers.

What is the isotopic fractionation pattern of Xe on Venus? Crucial question.

Loss of the primitive Venus ocean

- Minimum duration of H escape : > 100 Myr (required for the atmosphere to build up, see e.g. Ahrens et al, 1989).
- What was the fate of oxygen left behind? Did it escape together with H? Abiotic oxygen atmospheres may in principle form by this process.
- During hydrodynamic escape of H, an heavy element may be dragged off along with H only if its mass is smaller than a "crossover mass" m_c (see Hunten et al, 1987).
- Assuming EUV-driven escape, and that Φ_{EUV} evolved with time like $(t_0/t)^{5/6}$ (Zahnle and Walker, 1982):
 - m_c >140 (required for Xe fractionation) at t < ≈40 Myr
 - m_c >16 (required for O removal) at t < ≈600 Myr
- Hydrodynamic escape of O is therefore possible during the first half Gyr.

What was the fate of oxygen on Venus?

- Virtually no oxygen in Venus atmosphere. Several possible explanations :
- 1) Oxygen was removed by oxidation of surface rocks. Assuming FeO → Fe₂O₃, required crust production rate of ≈15 km³/yr (≈ Earth rate) during 4 Gyr. Not likely (no plate tectonics like on Earth).
- 2) Oxygen escaped to space :
 - 2a) By impact erosion at the very beginning: possible, but N₂/CO₂ inventories are similar for Venus and Earth!
 - 2b) By hydrodynamic escape (OK with crossover mass), but it requires another source of energy in addition to solar EUV (Chassefière, 1996).
- The primitive, intense, solar wind may have been this additional source (Chassefière, 1997), provided Venus had no Earth-type intrinsic magnetic field.

II] About the low Ar 40 Venus inventory

• Low ⁴⁰Ar level interpreted as the signature of a less outgassed mantle (Xie and Tackley, 2004).

Possible link between loss of water and stagnant lid regime

- The present « stagnant lid » regime (different of « plate tectonics » on Earth), making magma transport more difficult, could be due to a more viscous mantle.
- The terrestrial intra-plate crust production rate is similar to the maximum one assumed for Venus.
- Possible link between the early loss of water (with no rehydration of the mantle, increasing its viscosity) and the stagnant lid regime yielding:
 - smaller crust production rate
 - lesser outgassing from the interior

A model coupling mantle and atmosphere

III] Why so much Ar 36 on Venus...

From Pepin and Porcelli, 2002

- ... or so little Kr and Xe?
- Venus noble gas elemental spectrum much more solar like than Earth's and Mars' ones.
- If so, Venus Xe and Kr should not be isotopically fractionated. What is the fractionation pattern of Kr and Xe on Venus?
- Why is Ne depleted with respect to Ar/Kr/Xe?

Neon and argon isotopes

- ²⁰Ne/²²Ne :
 - 13.7 in solar wind
 - ≈12 on Venus
 - 9.8 on Earth
 - 7-11 in SNC meteorites (Mars).
- SW > Venus > Earth-Mars: clues to a solar origin, with some later fractionation by escape.
- ³⁶Ar/³⁸Ar similar for the 3 planets (≈5.5): **suggests no significant fractionation of Ar by hydrodynamic escape.**

```
Venus value
                              Earth value
Element
Radiogenic isotopes (mixing ratios)
He (ppm)
                0.6-12
40 Ar (ppm)
                21-51
129Xe (ppb)
                 < 9.5
Venus/Earth (abundance ratio)
4He
                 175-3700
                 0.25
Non-radiogenic isotopes (mixing ratios)
20Ne (ppm)
                 4-13
36 Ar (ppm)
                 21-48
84Xe (ppb)
                 7-38
132Xe (ppb)
                <10
                                   Large
Venus/Earth (abundance rano)
                                   uncertainties
20Ne
                21 [10-40]
36 Ar
                70 [50-110]
84Kr
                3 [1-5]
132Xe
                <35
Isotopic ratios
He/He
                < 3 10^{-4}
                              1.4 10-4
20 Ne/22 Ne
                11 2-12 6
                              98
21Ne/22Ne
                < 0.067
                              0.029
36 Ar/38 Ar
                5.45±0.1
                              5.32
                1.11±0.02
                              295.5
```

From Wieler, 2002

A model of neon fractionation through hydrodynamic escape

- Hypothesis: Ne fractionation on Venus results from hydrodynamic escape.
- A model has been constructed, by using conditions at the top of Venus atmosphere derived from Kasting and Pollack (1987), and the EUV energy-limited approach:
 - Hydrodynamic flow develops above 200 km altitude, with a bulk velocity at the base of 5 cm s⁻¹.
 - Homopause is located at 120 km, and gravitational fractionation is assumed above.
 - The solar EUV flux decreases as t^{-5/6} (Zanhle and Kasting, 1986).
 - The initial elemental and isotopic ratios of Xe, Kr, Ar and Ne are solar like.

Time evolution of Ar and Ne isotopes

- Kr and Xe are not significantly removed.
- Ar is only slightly removed.
- 20% of Ne is removed, and ²²Ne/²⁰Ne decreases from 13.7 (solar) to 12.1 (present Venus value)

About ≈2 TO equivalent-H escape

Fractionation pattern and initial elemental pattern

Present state of knowledge and questions

- Small elemental fractionation wrt Sun (except for Ne), suggesting solar origin.
- Observed Ne isotopic pattern put constraints on water loss by hydrodynamic escape.
- Venus atmosphere possibly less evolved than other atmospheres: if so, may be used as a reference for studying other planets.
- Major key: isotopic fractionation pattern of Kr and Xe. Did Venus know an early intense SW-driven hydrodynamic escape phase? Fate of O left behind H?
- Expected relationship between mantle and atmosphere histories.

Expected scientific return from Venus noble gas measurements: atmosphere evolution

- Confirm (or not) that Venus noble gas are solar like (not only elemental, but also isotopic ratios).
- If so,
 - build self-consistent models of water hydrodynamic escape,
 constrained by isotopic signatures imprinted on noble gases,
 - reassess the current scenarios of Earth and Mars atmosphere evolution by using Venus noble gases as a reference.
- If not so (Venus noble gases are not solar like, e.g. Xe is Earth-like),
 - infer fractionation patterns of noble gases in preplanetary carriers,
 - in intermediate cases (Venus is "between" the Sun and Earth),
 disentangle effects of pre-planetary and planetary processes.

Implications for mantle convective regime and thermal history

- Couple mantle convection models and atmospheric models, in terms of water exchange, and of loss of water to space.
- Model cycling of water to mantle in both "plate tectonics" and "stagnant lid" regimes taking into account EUV and/or SW-powered hydrodynamic escape as a sink of atmospheric water.
- Study the effects of mantle dehydration, if escape is strong, on the transition from "plate tectonics" to "stagnant lid". Construct a self-consistent model of Venus mantle history, time evolution of crust production and outgassing, and atmospheric evolution.

Other measurements of interest

- Vertical profiles of species in the low atmosphere, including the fugacity of oxygen.
- Mineralogy of the surface and oxidation state.
- Energetic budget of low atmosphere (radiative, convective, latent and sensible heat fluxes)

From Fegley et al, 1997

• Objective: better understand the thermochemical equilibrium between surface rocks and atmosphere.

A descent probe in Venus atmosphere: a few possible key instruments

- Noble gas mass spectrometer.
- GCMS instrument for chemical composition (gas and clouds), optical gas analyzer.
- Oxygen fugacity sensor
- Nephelometer (clouds)
- Thermal IR spectrometer
- Vis/Near IR spectro-imager
- Atmospheric package (n, T, accelerometer, electrical conductivity)
- Radioelectric, acoustic, magnetic, radioactive tracer sensors.

Additional slides (instruments)

Noble gas mass spectrometer

Possibility of using in parallel, and/or before mass spectrometer, chromatographic columns:

- MolSieve : noble gases, N₂, CO, ...
- Silica-PLOT : SO₂, COS, H₂S, ...

Scientific objectives :

- Noble gases (isotopic and elemental composition)
- Stable isotopes (C, O, N)
- Molecular composition

• Method:

- Separation line (getter, membrane)
- Ionization source (microtips)
- Time-of-Flight Mass spectrometer

Electrochemical measurement of O₂ fugacity

Principle of zirconium sensor (ZrO₂)

- Scientific objectives:
 - Constrain thermochemical models of the deep atmosphere.

• Principle:

- Fuel cell.
- Combustion of atmospheric gases.
- Measurement of a current, which is the counterpart of oxygen ions through the electrolyte.

• Advantages:

- Very light sensor : a few grams
- Directly works at high temperature.

Example of O₂ measurement in a volcanic hot vent

Continuous measurement of the oxygen fugacity in a hot vent of a volcano, Aeolian Islands, Italy. It is clearly seen that, above 370°C (643.2K), the oxygen sensor clips on the actual value of the fumarolic oxygen fugacity.

Thermal IR atmospheric spectra

• Simulation of atmospheric spectra seen from different altitudes by a spectrometer looking downwards, working at x 500 resolving power.

Spectral reflectivity of the surface

Transparency windows

Spectral interval	Transparency	Nature of the
(μm)	length $^{(1)}(\tau=1)$	signal
0.6 - 0.9	1.5-10 km	Solar flux
0.96 - 1.035	15 km	Solar flux
1.09 - 1.11	20 km	Solar flux
1.16 - 1.195	10 km	Solar flux
1.27 - 1.28	1 km	Solar flux
1.72 - 1.75	1 km	Thermal emission
2.21 - 2.46	100 m	Thermal emission
3 - 3.7	100 m	Thermal emission

(1) without Rayleigh diffusion.

Note that, at all wavelengths between 0.5 and 1.20 μ m, at least 1 or 2% of the solar light seems to reach the surface.